If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(6x^2^+5x)=12
We move all terms to the left:
2(6x^2^+5x)-(12)=0
We multiply parentheses
12x^2+10x-12=0
a = 12; b = 10; c = -12;
Δ = b2-4ac
Δ = 102-4·12·(-12)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-26}{2*12}=\frac{-36}{24} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+26}{2*12}=\frac{16}{24} =2/3 $
| x=3+0.04/1.32 | | x=4/1.32 | | x=0+6.09/1.62 | | 2a+5=1/5(15a+5) | | x*9.6=6 | | 9.81/x=1.62 | | 5n+12=25–4n+5 | | 4(x+4)=-6 | | Xx9.6=6 | | P^-12p+32=0 | | 13x•20-4x-16+x=54 | | 12x+4=13+5x | | 19(4+x)=589 | | -5+x/3=-14 | | 5x^2-25x=125 | | 5000=(x*1.25)-x | | m^2+12=22 | | m=m+8 | | 4a-2+5=2a | | X+5y=A | | 1/2(12u-4u+6)=1×2u | | 2x^2-15x=-x^2 | | -z+6-5z=14-2z | | 2t-3t=3t-8 | | 11+p=-8(4p+3)-2p | | .66(x+3)=6 | | 5(j-4)+1j=-8 | | 6x-16=2x+2 | | (2x–2)3=8x3-24x2+24x-8 | | 1/3r+7=3+2/3r | | 8n-36=6(1+5n)-4n | | 5v+8=23 |